Application of toPEX Altimetry for Solid Earth deformation Studies

نویسندگان

  • Hyongki Lee
  • C. K. Shum
  • Chung-Yen Kuo
  • Yuchan Yi
  • Alexander Braun
چکیده

This study demonstrates the use of satellite radar altimetry to detect solid Earth deformation signals such as Glacial Isostatic Adjustment (GIA). Our study region covers moderately flat land surfaces seasonally covered by snow/ice/vegetation. The maximum solid Earth uplift of ~10 mm yr-1 is primarily due to the incomplete glacial isostatic rebound that occurs around Hudson Bay, North America. We use decadal (1992 2002) surface height measurements from TOPEX/POSEIDON radar altimetry to generate height changes time series for 12 selected locations in the study region. Due to the seasonally varying surface characteristics, we first perform radar waveform shape classification and have found that most of the waveforms are quasi-diffuse during winter/spring and specular during summer/fall. As a result, we used the NASA β-retracker for the quasidiffuse waveforms and the Offset Center of Gravity or the threshold retracker for the specular waveforms, to generate the surface height time series. The TOPEX height change time series exhibit coherent seasonal signals (higher amplitude during the winter and lower amplitude during the summer), and the estimated deformation rates agree qualitatively well with GPS vertical velocities, and with altimeter/tide gauge combined vertical velocities around the Great Lakes. The TOPEX observations also agree well with various GIA model predictions, especially with the ICE-5G (VM2) model with differences at 0.2 ± 1.4 mm yr-1, indicating that TOPEX has indeed observed solid Earth deformation signals manifested as crustal uplift over the former Laurentide Ice Sheet region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal / semidiurnal oceanic tidal angular momentum : Topex / Poseidon models in comparison with Earth ' s rotation rate

The oceanic tidal angular momentum (OTAM) has been demonstrated to be the primary cause for the diurnal and semidiurnal variations in the Earth's rotational rate, or AUT1. Three ocean tide models derived from the Topex/Poseidon altimetry mission are employed to yield predictions of AUT1 for eight major diurnal/semidiurnal fides. The predictions are compared with geodetic determinations ofAUT1 f...

متن کامل

Satellite Altimetry for Hydrological Purpose Master Thesis GEOENGINE

As a new spatial measuring technic developed in 1970s,altimetry was designed to determine the sea surface height based on spatial technology, electronic technology and microwave technology. It also plays an important role in geodesy and oceanography; meanwhile, it can provide all-weather and repetitious measurements in global region for the studying of variation of SSH, earth gravity field, oce...

متن کامل

Louisiana Wetland Water Level Monitoring Using Retracked TOPEX/POSEIDON Altimetry

Previous studies using satellite radar altimetry to observe inland river and wetland water level changes usually spatially average high-rate (10-Hz for TOPEX, 18-Hz for Envisat) measurements. Here we develop a technique to apply retracking of TOPEX waveforms by optimizing the estimated retracked gate positions using the Offset Center of Gravity retracker. This study, for the first time, utilize...

متن کامل

Least Squares Techniques for Extracting Water Level Fluctuations in the Persian Gulf and Oman Sea

Extracting the main cyclic fluctuations from sea level changes of the Persian Gulf and Oman Sea is vital for understanding the behavior of tides and isolating non-tidal impacts such as those related to climate and changes in the ocean-sea circulations. This study compares two spectral analysis methods including: Least Squares Spectral Analysis (LSSA) and Least Squares Harmonic Estimation (LSHE)...

متن کامل

Measuring water storage fluctuations in lake Dongting, China, by Topex/Poseidon satellite altimetry.

Although satellite radar altimetry was developed and optimized for open oceans, it has been used to monitor variations in the level of inland water-bodies such as lakes and rivers. Here, for the first time, we have further used the altimetry-derived variation of water level for estimating the fluctuation of water storage as an addition to the present in situ water storage estimation systems to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008